Find or Sell Used Cars, Trucks, and SUVs in USA

Recharge Wrap-up: Ford's "snowtonomous" Fusion Hybrid, Porsche eyes battery makers

Fri, Mar 11 2016 Bosch and Panasonic are vying to be the battery supplier for Porsche's electric sports car based on the Mission E concept. While Bosch's costs may be higher, its solution would offer simpler logistics. Panasonic is already well established as a battery maker, providing the packs for the Porsche car's rival, Tesla. "We're in the final stage of making a decision," says Porsche CEO Oliver Blume, declining to comment on specific manufacturers. Neither Bosch nor Panasonic provided comment. Read more from Automotive News.

Renault will supply a fleet of 150 Renault Zoe EVs for a smart solar charging project in Utrecht, Netherlands. The project involves the installation of 1,000 EV chargers powered by 10,000 photovoltaic panels. The Renault Zoes would be used as part of a carsharing program powered by the solar chargers. Renault and its partners will also implement a vehicle-to-grid system to provide energy during peak demand from the solar chargers and connected EVs. Read more in the press release from Renault.

Ford has been testing an autonomous Fusion Hybrid prototype that is capable of driving itself in snowy conditions. Ford uses 3D mapping to scan the drive route. Its LiDAR laser mapping can even detect single falling snowflakes. It collects and processes up to 600 gigabytes of data per hour, comparing its environment to saved maps, a process that helps establish location more precisely than GPS. In addition to the LiDAR systems, the car is also equipped with cameras and radar to help it navigate. Eventually, the car could even be able to clean off its sensors when it detects loss of performance from ice and dirt. Read more in the press release below.

FROM AUTONOMY TO SNOWTONOMY: HOW FORD FUSION HYBRID AUTONOMOUS RESEARCH VEHICLE CAN NAVIGATE IN WINTER

DEARBORN, Mich., March 10, 2016 – Driving in snow can be a slippery challenge, with the potential for one blizzardy gust to white-out your field of view – a situation faced by the majority of people in the United States. So if self-driving cars are to become a reality – and they almost certainly will – they must be able to navigate snow-covered roads. In its quest to bring self-driving vehicles to millions of people around the world, Ford reveals six facts about its technology that allows for a car to drive itself in snow.

1. Mapping the way: Ford first creates high-resolution 3D maps using LiDAR technology to scan the area its autonomous vehicle will later drive in the snow.

To operate in snow, Ford Fusion Hybrid autonomous vehicles first need to scan the environment to create high-resolution 3D digital maps. By driving the test route in ideal weather, the Ford autonomous vehicle creates highly accurate digital models of the road and surrounding infrastructure using four LiDAR scanners that generate a total of 2.8 million laser points a second. The resulting map then serves as a baseline that's used to identify the car's position when driving in autonomous mode. Using the LiDAR sensors to scan the environment in real time, the car can locate itself within the mapped area later, when the road is covered in snow.

2. Better have an unlimited data plan: Ford's autonomous vehicles collect and process significantly more mapping data in an hour than the average person uses in mobile-phone data in 10 years.

While mapping their environment, Ford autonomous vehicles collect and process a diverse set of data about the road and surrounding landmarks – signs, buildings, trees and other features. All told, the car collects up to 600 gigabytes per hour, which it uses to create a high-resolution 3D map of the landscape. In the United States, the average subscriber of a cellular data plan uses about 21.6 gigabytes per year, for a 10-year total of 216 gigabytes.

3. Super smart sensors: Ford uses LiDAR sensors that are so powerful, they can even identify falling snowflakes and raindrops.

Ford's autonomous vehicles generate so many laser points from the LiDAR sensors that some can even bounce off falling snowflakes or raindrops, returning the false impression that there's an object in the way. Of course, there's no need to steer around precipitation, so Ford – working with University of Michigan researchers – created an algorithm that recognizes snow and rain, filtering them out of the car's vision so it can continue along its path.

4. Not your average navigation: The way Ford's autonomous vehicles identify their location is more accurate than GPS.

When you think about vehicle navigation, GPS usually comes to mind. But where current GPS is accurate to just more than 10 yards, autonomous operation requires precise vehicle location. By scanning their environment for landmarks, then comparing that information to the 3D digital maps stored in their databanks, Ford's autonomous vehicles can precisely locate themselves to within a centimeter.

5. No need for glasses: Sensor fusion – the combination of data from multiple sensors – plus smart monitoring of sensor health help keep Ford's autonomous vehicles out of the blind.

In addition to LiDAR sensors, Ford uses cameras and radar to monitor the environment around the vehicle, with the data generated from all of those sensors fused together in a process known as sensor fusion. This process results in robust 360-degree situational awareness. Sensor fusion means that one inactive sensor – perhaps caused by ice, snow, grime or debris buildup on a sensor lens – does not necessarily hinder autonomous driving. Still, Ford autonomous vehicles monitor all LiDAR, camera and radar systems to identify the deterioration of sensor performance, which helps keep sensors in ideal working order. Eventually, the cars might be able to handle ice and grime buildup themselves through self-cleaning or defogging measures.

6.Look Mom, no hands: The first person behind the wheel of a demonstrated autonomy test in snow is an astrophysics major who never dreamed he'd be in a self-driving car.

Before Wayne Williams joined Ford's autonomy team, he worked on remote sensing technology on behalf of the federal government. A self-described "geek," Williams was intrigued by autonomous vehicles. But he never envisioned one day being part of a team working to bring them to reality – let alone being behind the wheel of the auto industry's first publicly demonstrated autonomous snow test. The mood in the car that day was all business, he recalls, with a coworker monitoring the computing system from the back seat. "Because of the extensive development work, we were confident the car would do exactly what we asked of it," says Williams. "But it wasn't until after the test that the achievement began to sink in."

Ford is the first automaker to publicly demonstrate autonomous vehicle operation in the snow. The company's winter weather road testing takes place in Michigan, including at Mcity – a 32-acre, real-world driving environment at the University of Michigan. Ford's testing on this full-scale simulated urban campus is aimed at supporting the company's mission to learn about and advance the emerging field of autonomous driving.
Featured Gallery Porsche Mission E Concept: Frankfurt 2015
View 37 Photos
Related Gallery 2016 Renault Zoe Z.E.: Geneva 2016
View 16 Photos
  • News Source: Automotive News, Renault, Ford
  • Image Credit: Copyright 2016 Drew Phillips / AOL
  • Green
  • Ford
  • Porsche
  • Renault
  • Transportation Alternatives
  • Technology
  • Autonomous Vehicles
  • Electric
  • Solar Cars
  • recharge wrapup

By John Beltz Snyder


See also: Jeep Moab Concepts, Rumors, And More | Autoblog Podcast #470, Recharge Wrap-up: Formula E's other events, continued record EV sales, Ken Block's Gymkhana 8 to feature Dubai Police cars?.